Decomposing the complete graph into Hamiltonian paths (cycles) and 3-stars
Author(s) -
Zhen-Chun Chen,
Hung-Chih Lee
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2153
Subject(s) - mathematics , combinatorics , stars , hamiltonian path , graph , discrete mathematics , astrophysics , physics
Let H be a graph. A decomposition of H is a set of edge-disjoint subgraphs of H whose union is H. A Hamiltonian path (respectively, cycle) of H is a path (respectively, cycle) that contains every vertex of H exactly once. A k-star, denoted by Sk, is a star with k edges. In this paper, we give necessary and sufficient conditions for decomposing the complete graph into α copies of Hamiltonian path (cycle) and β copies of S3.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom