z-logo
open-access-imgOpen Access
A note on cycles in locally Hamiltonian and locally Hamilton-connected graphs
Author(s) -
Long Tang,
Elkin Vumar
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2124
Subject(s) - mathematics , combinatorics , conjecture , neighbourhood (mathematics) , vertex connectivity , induced subgraph , pancyclic graph , graph , hamiltonian path , distance hereditary graph , discrete mathematics , vertex (graph theory) , line graph , graph power , 1 planar graph , mathematical analysis
Let be a property of a graph. A graph G is said to be locally , if the subgraph induced by the open neighbourhood of every vertex in G has property . Ryjáček conjectures that every connected, locally connected graph is weakly pancyclic. Motivated by the above conjecture, van Aardt et al. [S.A.van Aardt, M. Frick, O.R. Oellermann and J.P.de Wet, Global cycle properties in locally connected, locally traceable and locally Hamiltonian graphs, Discrete Appl. Math. 205 (2016) 171–179] investigated the global cycle structures in connected, locally traceable/Hamiltonian graphs. Among other results, they proved that a connected, locally Hamiltonian graph G with maximum degree at least |V (G)| − 5 is weakly pancyclic. In this note, we improve this result by showing that such a graph with maximum degree at least |V (G)|−6 is weakly pancyclic. Furthermore, we show that a connected, locally Hamilton-connected graph with maximum degree at most 7 is fully cycle extendable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom