z-logo
open-access-imgOpen Access
On the independence number of traceable 2-connected claw-free graphs
Author(s) -
Shipeng Wang,
Liming Xiong
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2113
Subject(s) - mathematics , claw , combinatorics , independence number , independence (probability theory) , graph , statistics , biology , ecology
A well-known theorem by Chvátal-Erdőos [A note on Hamilton circuits, Discrete Math. 2 (1972) 111–135] states that if the independence number of a graph G is at most its connectivity plus one, then G is traceable. In this article, we show that every 2-connected claw-free graph with independence number α(G) ≤ 6 is traceable or belongs to two exceptional families of well-defined graphs. As a corollary, we also show that every 2-connected claw-free graph with independence number α(G) ≤ 5 is traceable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom