On the total Roman domination in trees
Author(s) -
Jafar Amjadi,
Seyed Mahmoud Sheikholeslami,
M. Soroudi
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2099
Subject(s) - mathematics , combinatorics , domination analysis , graph , vertex (graph theory)
A total Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the following conditions: (i) every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2 and (ii) the subgraph of G induced by the set of all vertices of positive weight has no isolated vertex. The weight of a total Roman dominating function f is the value f(V (G)) = Σu∈V(G)f (u). The total Roman domination number γtR(G) is the minimum weight of a total Roman dominating function of G. Ahangar et al. in [H.A. Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501–517] recently showed that for any graph G without isolated vertices, 2γ(G) ≤ γtR(G) ≤ 3γ(G), where γ(G) is the domination number of G, and they raised the problem of characterizing the graphs G achieving these upper and lower bounds. In this paper, we provide a constructive characterization of these trees.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom