More results on the smallest one-realization of a given set II
Author(s) -
Kefeng Diao,
Fuliang Lu,
Ping Zhao
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2093
Subject(s) - mathematics , realization (probability) , combinatorics , set (abstract data type) , discrete mathematics , statistics , computer science , programming language
Let S be a finite set of positive integers. A mixed hypergraph ℋ is a onerealization of S if its feasible set is S and each entry of its chromatic spectrum is either 0 or 1. The minimum number of vertices, denoted by δ3(S), in a 3-uniform bi-hypergraph which is a one-realization of S was determined in [P. Zhao, K. Diao and F. Lu, More result on the smallest one-realization of a given set, Graphs Combin. 32 (2016) 835–850]. In this paper, we consider the minimum number of edges in a 3-uniform bi-hypergraph which already has the minimum number of vertices with respect of being a minimum bihypergraph that is one-realization of S. A tight lower bound on the number of edges in a 3-uniform bi-hypergraph which is a one-realization of S with δ3(S) vertices is given.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom