z-logo
open-access-imgOpen Access
The {-2,-1}-selfdual and decomposable tournaments
Author(s) -
Youssef Boudabbous,
Pierre Ille
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2059
Subject(s) - tournament , vertex (graph theory) , combinatorics , mathematics , discrete mathematics , graph
We only consider finite tournaments. The dual of a tournament is obtained by reversing all the arcs. A tournament is selfdual if it is isomorphic to its dual. Given a tournament T, a subset X of V (T) is a module of T if each vertex outside X dominates all the elements of X or is dominated by all the elements of X. A tournament T is decomposable if it admits a module X such that 1 < |X| < |V (T)|. We characterize the decomposable tournaments whose subtournaments obtained by removing one or two vertices are selfdual. We deduce the following result. Let T be a non decomposable tournament. If the subtournaments of T obtained by removing two or three vertices are selfdual, then the subtournaments of T obtained by removing a single vertex are not decomposable. Lastly, we provide two applications to tournaments reconstruction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom