z-logo
open-access-imgOpen Access
Total colorings of embedded graphs with no 3-cycles adjacent to 4-cycles
Author(s) -
Lin Sun,
Wang Bing,
Jianliang Wu
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2058
Subject(s) - mathematics , combinatorics
A total-k-coloring of a graph G is a coloring of V ∪ E using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number χ′′(G) of G is the smallest integer k such that G has a total-k-coloring. Let G be a graph embedded in a surface of Euler characteristic ε ≥ 0. If G contains no 3-cycles adjacent to 4-cycles, that is, no 3-cycle has a common edge with a 4-cycle, then χ′′(G) ≤ max{8,Δ+1}.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom