z-logo
open-access-imgOpen Access
Rainbow total-coloring of complementary graphs and Erdos-Gallai type problem for the rainbow total-connection number
Author(s) -
Zemin Jin,
Yuefang Sun,
Jianhua Tu
Publication year - 2018
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2056
Subject(s) - rainbow , mathematics , combinatorics , connection (principal bundle) , edge coloring , graph , geometry , physics , line graph , graph power , quantum mechanics
A total-colored graph G is rainbow total-connected if any two vertices of G are connected by a path whose edges and internal vertices have distinct colors. The rainbow total-connection number, denoted by rtc(G), of a graph G is the minimum number of colors needed to make G rainbow total-connected. In this paper, we prove that rtc(G) can be bounded by a constant 7 if the following three cases are excluded: diam(Ḡ) = 2, diam(Ḡ) = 3, Ḡ contains exactly two connected components and one of them is a trivial graph. An example is given to show that this bound is best possible. We also study Erdős-Gallai type problem for the rainbow total-connection number, and compute the lower bounds and precise values for the function f(n, k), where f(n, k) is the minimum value satisfying the following property: if |E(G)| ≥ f(n, k), then rtc(G) ≤ k.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom