z-logo
open-access-imgOpen Access
Describing neighborhoods of 5-vertices in 3-polytopes with minimum degree 5 and without vertices of degrees from 7 to 11
Author(s) -
O. V. Borodin,
A. O. Ivanova,
O.N. Kazak
Publication year - 2017
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.2024
Subject(s) - combinatorics , mathematics , polytope , vertex (graph theory) , degree (music) , lebesgue integration , set (abstract data type) , graph , discrete mathematics , computer science , physics , acoustics , programming language
In 1940, Lebesgue proved that every 3-polytope contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences: (6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11), (5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17), (5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6, ∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11), (5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13). In this paper we prove that every 3-polytope without vertices of degree from 7 to 11 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences: (5, 5, 6, 6, ∞), (5, 6, 6, 6, 15), (6, 6, 6, 6, 6), where all parameters are tight.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom