z-logo
open-access-imgOpen Access
The distance magic index od a graph
Author(s) -
Subramanian Arumugam,
Aloysius Godinho,
Tarkeshwar Singh
Publication year - 2017
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1998
Subject(s) - combinatorics , mathematics , magic (telescope) , bijection , bipartite graph , graph , graph labeling , discrete mathematics , windmill graph , graph power , line graph , physics , quantum mechanics
Let G be a graph of order n and let S be a set of positive integers with |S| = n. Then G is said to be S-magic if there exists a bijection ϕ : V (G) → S satisfying ∑x∈N(u) ϕ(x) = k (a constant) for every u ∈ V (G). Let α(S) = max{s : s ∈ S}. Let i(G) = min α(S), where the minimum is taken over all sets S for which the graph G admits an S-magic labeling. Then i(G) − n is called the distance magic index of the graph G. In this paper we determine the distance magic index of trees and complete bipartite graphs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom