z-logo
open-access-imgOpen Access
Twin minus total domination numbers in directed graphs
Author(s) -
Maryam Atapour,
Nasrin Dehgardi
Publication year - 2017
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1983
Subject(s) - digraph , combinatorics , mathematics , domination analysis , graph , strongly connected component , directed graph , discrete mathematics , vertex (graph theory)
Let D = (V,A) be a finite simple directed graph (shortly, digraph). A function f : V → {−1, 0, 1} is called a twin minus total dominating function (TMTDF) if f(N−(v)) ≥ 1 and f(N+(v)) ≥ 1 for each vertex v ∈ V. The twin minus total domination number of D is y*mt(D) = min{w(f) | f is a TMTDF of D}. In this paper, we initiate the study of twin minus total domination numbers in digraphs and we present some lower bounds for y*mt(D) in terms of the order, size and maximum and minimum in-degrees and out-degrees. In addition, we determine the twin minus total domination numbers of some classes of digraphs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom