A sharp lower bound for generalized 3-edge-connectivity of strong product graphs
Author(s) -
Yuefang Sun
Publication year - 2017
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1982
Subject(s) - combinatorics , mathematics , upper and lower bounds , disjoint sets , pairwise comparison , generalization , graph , enhanced data rates for gsm evolution , discrete mathematics , computer science , mathematical analysis , telecommunications , statistics
The generalized k-connectivity κk(G) of a graph G, mentioned by Hager in 1985, is a natural generalization of the path-version of the classical connectivity. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λk(G) = min{λG(S) | S ⊆ V (G) and |S| = k}, where λG(S) denote the maximum number ℓ of pairwise edge-disjoint trees T1, T2, . . . , Tℓ in G such that S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. In this paper we get a sharp lower bound for the generalized 3-edge-connectivity of the strong product of any two connected graphs
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom