The degree-diameter problem for outerplanar graphs
Author(s) -
Peter Dankelmann,
Elizabeth Jonck,
Tomáš Vetrík
Publication year - 2017
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1969
Subject(s) - mathematics , combinatorics , outerplanar graph , degree (music) , graph , discrete mathematics , 1 planar graph , pathwidth , partial k tree , chordal graph , line graph , physics , acoustics
For positive integers Δ and D we define nΔ,D to be the largest number of vertices in an outerplanar graph of given maximum degree Δ and diameter D. We prove that nΔ,D=ΔD2+O (ΔD2−1)$n_{\Delta ,D} = \Delta ^{{D \over 2}} + O\left( {\Delta ^{{D \over 2} - 1} } \right)$ is even, and nΔ,D=3ΔD−12+O (ΔD−12−1)$n_{\Delta ,D} = 3\Delta ^{{{D - 1} \over 2}} + O\left( {\Delta ^{{{D - 1} \over 2} - 1} } \right)$ if D is odd. We then extend our result to maximal outerplanar graphs by showing that the maximum number of vertices in a maximal outerplanar graph of maximum degree Δ and diameter D asymptotically equals nΔ,D
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom