z-logo
open-access-imgOpen Access
A degree condition implying Ore-type condition for even [2,b]-factors in graphs
Author(s) -
Shoichoi Tsuchiya,
Takamasa Yashima
Publication year - 2017
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1964
Subject(s) - combinatorics , mathematics , counterexample , conjecture , graph , induced subgraph , order (exchange) , degree (music) , discrete mathematics , physics , acoustics , finance , vertex (graph theory) , economics
For a graph G and even integers b ⩾ a ⩾ 2, a spanning subgraph F of G such that a ⩽ degF (x) ⩽ b and degF (x) is even for all x ∈ V (F) is called an even [a, b]-factor of G. In this paper, we show that a 2-edge-connected graph G of order n has an even [2, b]-factor if max {degG (x),degG (y)}⩾max {2n2+b,3}$\max \{ \deg _G (x),\deg _G (y)\} \ge \max \left\{ {{{2n} \over {2 + b}},3} \right\}$ for any nonadjacent vertices x and y of G. Moreover, we show that for b ⩾ 3a and a > 2, there exists an infinite family of 2-edge-connected graphs G of order n with δ(G) ⩾ a such that G satisfies the condition degG (x)+degG (y)>2ana+b$\deg _G (x) + \deg _G (y) > {{2an} \over {a + b}}$ for any nonadjacent vertices x and y of G, but has no even [a, b]-factors. In particular, the infinite family of graphs gives a counterexample to the conjecture of Matsuda on the existence of an even [a, b]-factor

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom