z-logo
open-access-imgOpen Access
A note on non-dominating set partitions in graphs
Author(s) -
Wyatt J. Desormeaux,
Teresa W. Haynes,
Michael A. Henning
Publication year - 2016
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1895
Subject(s) - mathematics , combinatorics , dominating set , set (abstract data type) , discrete mathematics , graph , vertex (graph theory) , computer science , programming language
A set S of vertices of a graph G is a dominating set if every vertex not in S is adjacent to a vertex of S and is a total dominating set if every vertex of G is adjacent to a vertex of S. The cardinality of a minimum dominating (total dominating) set of G is called the domination (total domination) number. A set that does not dominate (totally dominate) G is called a non-dominating (non-total dominating) set of G. A partition of the vertices of G into non-dominating (non-total dominating) sets is a non-dominating (non-total dominating) set partition. We show that the minimum number of sets in a non-dominating set partition of a graph G equals the total domination number of its complement G̅ and the minimum number of sets in a non-total dominating set partition of G equals the domination number of G̅ . This perspective yields new upper bounds on the domination and total domination numbers. We motivate the study of these concepts with a social network application

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom