z-logo
open-access-imgOpen Access
A Fan-type heavy pair od subgraphs for pancyclicity of 2-connected graphs
Author(s) -
Wojciech Wideł
Publication year - 2015
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1840
Subject(s) - mathematics , combinatorics , type (biology) , biology , paleontology
Let G be a graph on n vertices and let H be a given graph. We say that G is pancyclic, if it contains cycles of all lengths from 3 up to n, and that it is H-f1-heavy, if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies min⁡{dG(u),dG(v)}≥n+12$\min \{ d_G (u),d_G (v)\} \ge {{n + 1} \over 2}$. In this paper we prove that every 2-connected {K1,3, P5}-f1-heavy graph is pancyclic. This result completes the answer to the problem of finding f1-heavy pairs of subgraphs implying pancyclicity of 2-connected graphs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom