On •-line signed graphs L_{•}(S)
Author(s) -
Ayushi Dhama,
Deepa Sinha
Publication year - 2015
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1793
Subject(s) - combinatorics , mathematics , vertex (graph theory) , signed graph , graph , line graph , sign (mathematics) , discrete mathematics , mathematical analysis
A signed graph (or sigraph for short) is an ordered pair S = (Su,σ), where Su is a graph, G = (V,E), called the underlying graph of S and σ : E → {+,−} is a function from the edge set E of Su into the set {+,−}. For a sigraph S its •-line sigraph, L•(S) is the sigraph in which the edges of S are represented as vertices, two of these vertices are defined adjacent whenever the corresponding edges in S have a vertex in common, any such L-edge ee′ has the sign given by the product of the signs of the edges incident with the vertex in e ∩ e′. In this paper we establish a structural characterization of •-line sigraphs, extending a well known characterization of line graphs due to Harary. Further we study several standard properties of •-line sigraphs, such as the balanced •-line sigraphs, sign-compatible •-line sigraphs and C-sign-compatible •-line sigraphs
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom