Interval edge-colorings of Cartesian products of graphs I
Author(s) -
Hrant Khachatrian,
Petros A. Petrosyan,
Hovhannes G. Tananyan
Publication year - 2013
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1693
Subject(s) - combinatorics , edge coloring , mathematics , interval (graph theory) , vertex (graph theory) , graph , discrete mathematics , cartesian product , interval graph , conjecture , graph coloring , complete coloring , 1 planar graph , graph power , chordal graph , line graph
An edge-coloring of a graph $G$ with colors $1,...,t$ is an interval $t$-coloring if all colors are used, and the colors of edges incident to each vertex of $G$ are distinct and form an interval of integers. A graph $G$ is interval colorable if $G$ has an interval $t$-coloring for some positive integer $t$. Let $\mathfrak{N}$ be the set of all interval colorable graphs. For a graph $G\in \mathfrak{N}$, the least and the greatest values of $t$ for which $G$ has an interval $t$-coloring are denoted by $w(G)$ and $W(G)$, respectively. In this paper we first show that if $G$ is an $r$-regular graph and $G\in \mathfrak{N}$, then $W(G\square P_{m})\geq W(G)+W(P_{m})+(m-1)r$ ($m\in \mathbb{N}$) and $W(G\square C_{2n})\geq W(G)+W(C_{2n})+nr$ ($n\geq 2$). Next, we investigate interval edge-colorings of grids, cylinders and tori. In particular, we prove that if $G\square H$ is planar and both factors have at least 3 vertices, then $G\square H\in \mathfrak{N}$ and $w(G\square H)\leq 6$. Finally, we confirm the first author's conjecture on the $n$-dimensional cube $Q_{n}$ and show that $Q_{n}$ has an interval $t$-coloring if and only if $n\leq t\leq \frac{n(n+1)}{2}$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom