Characterizations of the family of all generalized line graphs-finite and infinite- and classification of the family of all graphs whose least eigenvalues \ge - 2
Author(s) -
G.R. Vijayakumar
Publication year - 2013
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1691
Subject(s) - infimum and supremum , mathematics , eigenvalues and eigenvectors , combinatorics , discrete mathematics , physics , quantum mechanics
The infimum of the least eigenvalues of all finite induced subgraphs of an infinite graph is defined to be its least eigenvalue. In [P.J. Cameron, J.M. Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic geometry, J. Algebra 43 (1976) 305-327], the class of all finite graphs whose least eigenvalues ≥ −2 has been classified: (1) If a (finite) graph is connected and its least eigenvalue is at least −2, then either it is a generalized line graph or it is represented by the root system E8. In [A. Torgašev, A note on infinite generalized line graphs, in: Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad, 1983 (Univ. Novi Sad, 1984) 291- 297], it has been found that (2) any countably infinite connected graph with least eigenvalue ≥ −2 is a generalized line graph. In this article, the family of all generalized line graphs-countable and uncountable-is described algebraically and characterized structurally and an extension of (1) which subsumes (2) is derived.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom