z-logo
open-access-imgOpen Access
Decompositions of plane graphs under parity constrains given by faces
Author(s) -
Július Czap,
Zsolt Tuza
Publication year - 2013
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1690
Subject(s) - combinatorics , parity (physics) , edge coloring , graph coloring , mathematics , graph , plane (geometry) , enhanced data rates for gsm evolution , geometry , computer science , physics , graph power , artificial intelligence , line graph , particle physics
An edge coloring of a plane graph G is facially proper if no two faceadjacent edges of G receive the same color. A facial (facially proper) parity edge coloring of a plane graph G is an (facially proper) edge coloring with the property that, for each color c and each face f of G, either an odd number of edges incident with f is colored with c, or color c does not occur on the edges of f. In this paper we deal with the following question: For which integers k does there exist a facial (facially proper) parity edge coloring of a plane graph G with exactly k colors?

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom