z-logo
open-access-imgOpen Access
Symmetric Hamilton cycle decompositions of complete multigraphs
Author(s) -
V. Chitra,
A. Muthusamy
Publication year - 2013
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1687
Subject(s) - mathematics , combinatorics , hamiltonian path , discrete mathematics , graph
Let n ≥ 3 and ⋋ ≥ 1 be integers. Let ⋋Kn denote the complete multigraph with edge-multiplicity ⋋. In this paper, we show that there exists a symmetric Hamilton cycle decomposition of ⋋K2m for all even ⋋ ≥ 2 and m ≥ 2. Also we show that there exists a symmetric Hamilton cycle decomposition of ⋋K2m − F for all odd ⋋ ≥ 3 and m ≥ 2. In fact, our results together with the earlier results (by Walecki and Brualdi and Schroeder) completely settle the existence of symmetric Hamilton cycle decomposition of ⋋Kn (respectively, ⋋Kn − F, where F is a 1-factor of ⋋Kn) which exist if and only if ⋋(n − 1) is even (respectively, ⋋(n − 1) is odd), except the non-existence cases n ≡ 0 or 6 (mod 8) when ⋋ = 1

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom