The incidence chromatic number of toroidal grids
Author(s) -
Éric Sopena,
Jiaojiao Wu
Publication year - 2012
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1663
Subject(s) - mathematics , combinatorics , chromatic scale , incidence (geometry) , graph , toroid , edge coloring , set (abstract data type) , discrete mathematics , physics , geometry , computer science , graph power , plasma , quantum mechanics , line graph , programming language
An incidence in a graph $G$ is a pair $(v,e)$ with $v \in V(G)$ and $e \in E(G)$, such that $v$ and $e$ are incident. Two incidences $(v,e)$ and $(w,f)$ are adjacent if $v=w$, or $e=f$, or the edge $vw$ equals $e$ or $f$. The incidence chromatic number of $G$ is the smallest $k$ for which there exists a mapping from the set of incidences of $G$ to a set of $k$ colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid $T_{m,n}=C_m\Box C_n$ equals 5 when $m,n \equiv 0 \pmod 5$ and 6 otherwise.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom