4-transitive digraphs I: the structure of strong 4-transitive digraphs
Author(s) -
César HernándezCruz
Publication year - 2012
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1645
Subject(s) - digraph , transitive relation , combinatorics , mathematics , conjecture , transitive reduction , discrete mathematics , graph , line graph , voltage graph
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is transitive if for every three distinct vertices u, v,w ∈ V (D), (u, v), (v,w) ∈ A(D) implies that (u,w) ∈ A(D). This concept can be generalized as follows: A digraph is k-transitive if for every u, v ∈ V (D), the existence of a uv-directed path of length k in D implies that (u, v) ∈ A(D). A very useful structural characterization of transitive digraphs has been known for a long time, and recently, 3-transitive digraphs have been characterized. In this work, some general structural results are proved for k-transitive digraphs with arbitrary k ≥ 2. Some of this results are used to characterize the family of 4-transitive digraphs. Also some of the general results remain valid for k-quasi-transitive digraphs considering an additional hypothesis. A conjecture on a structural property of k-transitive digraphs is proposed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom