Double geodetic number of a graph
Author(s) -
T. Jebaraj,
A. P. Santhakumaran
Publication year - 2012
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1589
Subject(s) - mathematics , combinatorics , geodetic datum , graph , crossing number (knot theory) , geodesy , geography , intersection (aeronautics) , cartography
For a connected graph G of order n, a set S of vertices is called a double geodetic set of G if for each pair of vertices x, y in G there exist vertices u, v ∈ S such that x, y ∈ I[u, v]. The double geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any double godetic of cardinality dg(G) is called dg-set of G. The double geodetic numbers of certain standard graphs are obtained. It is shown that for positive integers r, d such that r < d ≤ 2r and 3 ≤ a ≤ b there exists a connected graph G with rad G = r, diam G = d, g(G) = a and dg(G) = b. Also, it is proved that for integers n, d ≥ 2 and l such that 3 ≤ k ≤ l ≤ n and n−d− l+1 ≥ 0, there exists a graph G of order n diameter d, g(G) = k and dg(G) = l.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom