Complete minors, independent sets, and chordal graphs
Author(s) -
József Balogh,
John Lenz,
Hehui Wu
Publication year - 2011
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1571
Subject(s) - chordal graph , mathematics , combinatorics , treewidth , indifference graph , discrete mathematics , pathwidth , graph , line graph
The Hadwiger number h(G) of a graph G is the maximum size of a complete minor of G. Hadwiger's Conjecture states that h(G) >= \chi(G). Since \chi(G) \alpha(G) >= |V(G)|, Hadwiger's Conjecture implies that \alpha(G) h(G) >= |V(G)|. We show that (2 \alpha(G) - \lceil log_t(t \alpha(G)/2) \rceil) h(G) \geq |V(G)| where t is approximately 6.83. For graphs with \alpha(G) \geq 14, this improves on a recent result of Kawarabayashi and Song who showed (2 \alpha(G) - 2) h(G) >= |V(G)| when \alpha(G) >= 3.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom