z-logo
open-access-imgOpen Access
On the strong parity chromatic number
Author(s) -
Július Czap,
Stanislav Jendrol′,
František Kardoš
Publication year - 2011
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1567
Subject(s) - combinatorics , mathematics , vertex (graph theory) , parity (physics) , chromatic scale , upper and lower bounds , graph , wheel graph , discrete mathematics , graph power , line graph , physics , mathematical analysis , particle physics
A vertex colouring of a 2-connected plane graph G is a strong parity vertex colouring if for every face f and each colour c, the number of vertices incident with f coloured by c is either zero or odd. Czap et al. [Discrete Math. 311 (2011) 512-520] proved that every 2-connected plane graph has a proper strong parity vertex colouring with at most 118 colours. In this paper we improve this upper bound for some classes of plane graphs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom