z-logo
open-access-imgOpen Access
Kernels by monochromatic paths and the color-class digraph
Author(s) -
Hortensia GaleanaSánchez
Publication year - 2011
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1544
Subject(s) - digraph , monochromatic color , mathematics , combinatorics , class (philosophy) , discrete mathematics , artificial intelligence , computer science , botany , biology
An m-coloured digraph is a digraph whose arcs are coloured with m colors. A directed path is monochromatic when its arcs are coloured alike. A set S ⊆ V (D) is a kernel by monochromatic paths whenever the two following conditions hold: 1. For any x, y ∈ S, x 6= y, there is no monochromatic directed path between them. 2. For each z ∈ (V (D)− S) there exists a zS-monochromatic directed path In this paper it is introduced the concept of color-class digraph to prove that if D is an m-coloured strongly connected finite digraph such that: (i) Every closed directed walk has an even number of color changes, (ii) Every directed walk starting and ending with the same color has an even number of color changes, then D has a kernel by monochromatic paths. This result generalizes a classical result by Sands, Sauer and Woodrow which asserts that any 2-coloured digraph has a kernel by monochromatic paths, in case that the digraph D be a strongly connected digraph. 2000 Mathematics Subject classification: 05C20.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom