Kernels by monochromatic paths and the color-class digraph
Author(s) -
Hortensia GaleanaSánchez
Publication year - 2011
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1544
Subject(s) - digraph , monochromatic color , mathematics , combinatorics , class (philosophy) , discrete mathematics , artificial intelligence , computer science , botany , biology
An m-coloured digraph is a digraph whose arcs are coloured with m colors. A directed path is monochromatic when its arcs are coloured alike. A set S ⊆ V (D) is a kernel by monochromatic paths whenever the two following conditions hold: 1. For any x, y ∈ S, x 6= y, there is no monochromatic directed path between them. 2. For each z ∈ (V (D)− S) there exists a zS-monochromatic directed path In this paper it is introduced the concept of color-class digraph to prove that if D is an m-coloured strongly connected finite digraph such that: (i) Every closed directed walk has an even number of color changes, (ii) Every directed walk starting and ending with the same color has an even number of color changes, then D has a kernel by monochromatic paths. This result generalizes a classical result by Sands, Sauer and Woodrow which asserts that any 2-coloured digraph has a kernel by monochromatic paths, in case that the digraph D be a strongly connected digraph. 2000 Mathematics Subject classification: 05C20.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom