The Wiener number of powers of the Mycielskian
Author(s) -
Rangaswami Balakrishnan,
S. Francis Raj
Publication year - 2010
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1509
Subject(s) - mathematics , combinatorics
The Wiener number of a graph G is dened as 1 P u;v2V (G) d(u; v), d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians (G) of graphs G. Using this, we show that for k 1, W ( (S k n)) W ( (T k n)) W ( (P k n )), where Sn, Tn and Pn denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of (G k ).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom