z-logo
open-access-imgOpen Access
Fractional global domination in graphs
Author(s) -
Subramanian Arumugam,
I. Sahul Hamid,
K. Karuppasamy
Publication year - 2010
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1474
Subject(s) - mathematics , combinatorics , graph , domination analysis , function (biology) , discrete mathematics , vertex (graph theory) , biology , evolutionary biology
Let G = (V; E) be a graph. A function g : V ! [0; 1] is called a global dominating function (GDF ) of G, if for every v 2 V; g(N[v]) = P u2N[v] g(u) 1 and g(N(v)) = P u= 2N(v) g(u) 1. A GDF g of a

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom