Fractional global domination in graphs
Author(s) -
Subramanian Arumugam,
I. Sahul Hamid,
K. Karuppasamy
Publication year - 2010
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1474
Subject(s) - mathematics , combinatorics , graph , domination analysis , function (biology) , discrete mathematics , vertex (graph theory) , biology , evolutionary biology
Let G = (V; E) be a graph. A function g : V ! [0; 1] is called a global dominating function (GDF ) of G, if for every v 2 V; g(N[v]) = P u2N[v] g(u) 1 and g(N(v)) = P u= 2N(v) g(u) 1. A GDF g of a
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom