On Lee's conjecture and some results
Author(s) -
Lixia Fan,
Zhihe Liang
Publication year - 2009
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1459
Subject(s) - mathematics , conjecture , combinatorics
S.M. Lee proposed the conjecture: for any n > 1 and any permutation f in S(n), the permutation graph P (Pn, f) is graceful. For any integer n > 1 and permutation f in S(n), we discuss the gracefulness of the permutation graph P (Pn, f) if f = ∏l−1 k=0(m + 2k, m + 2k + 1), and ∏l−1 k=0(m+4k, m+4k +2)(m+4k +1, m+4k +3) for any positive integers m and l.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom