z-logo
open-access-imgOpen Access
Quasiperfect domination in triangular lattices
Author(s) -
Italo J. Dejter
Publication year - 2009
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1439
Subject(s) - mathematics , combinatorics
A vertex subset $S$ of a graph $G$ is a perfect (resp. quasiperfect) dominating set in $G$ if each vertex $v$ of $G\setminus S$ is adjacent to only one vertex ($d_v\in\{1,2\}$ vertices) of $S$. Perfect and quasiperfect dominating sets in the regular tessellation graph of Schl\"afli symbol $\{3,6\}$ and in its toroidal quotients are investigated, yielding the classification of their perfect dominating sets and most of their quasiperfect dominating sets $S$ with induced components of the form $K_{\nu}$, where $\nu\in\{1,2,3\}$ depends only on $S$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom