z-logo
open-access-imgOpen Access
Linear and cyclic radio k-labelings of trees
Author(s) -
Mustapha Kchikech,
Riadh Khennoufa,
Oliver Togni
Publication year - 2007
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1348
Subject(s) - combinatorics , mathematics , upper and lower bounds , graph , integer (computer science) , path (computing) , connectivity , discrete mathematics , computer science , mathematical analysis , programming language
Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two distinct vertices x and y, where dG(x,y) is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear (cyclic, respectively) radio k-labeling number of G is the minimum span of a linear (cyclic, respectively) radio k-labeling of G. In this paper, linear and cyclic radio k-labeling numbers of paths, stars and trees are studied. For the path Pn of order n ≤ k+1, we completely determine the cyclic and linear radio k-labeling numbers. For 1 ≤ k ≤ n−2, a new improved lower bound for the linear radio k-labeling number is presented. Moreover, we give the exact value of the linear radio k-labeling number of stars and we present an upper bound for the linear radio k-labeling number of trees.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom