On the structure of plane graphs of minimum face size 5
Author(s) -
Tomáš Madaras
Publication year - 2004
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1239
Subject(s) - mathematics , combinatorics , face (sociological concept) , plane (geometry) , discrete mathematics , geometry , sociology , social science
A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is known that a plane graph of minimum face size 5 contains light paths and a light pentagon. In this paper we show that every plane graph of minimum face size 5 contains also a light star K1,3 and we present a structural result concerning the existence of a pair of adjacent faces with degree– bounded vertices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom