z-logo
open-access-imgOpen Access
A σ_3 type condition for heavy cycles in weighted graphs
Author(s) -
Hajo Broersma,
Xue Liang Li,
Shenggui Zhang
Publication year - 2001
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1140
Subject(s) - mathematics , combinatorics , vertex (graph theory) , graph , degree (music) , discrete mathematics , physics , acoustics
A weighted graph is a graph in which each edge e is assigned a non-negative number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its edges. The weighted degree dw(v) of a vertex v is the sum of the weights of the edges incident with v. In this paper, we prove the following result: Suppose G is a 2-connected weighted graph which satisfies the following conditions: 1. The weighted degree sum of any three independent vertices is at least m; 2. w(xz)=w(yz) for every vertex z∈N(x)∩ N(y) with d(x,y)=2; 3. In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a Hamilton cycle or a cycle of weight at least 2m/3. This generalizes a theorem of Fournier and Fraisse on the existence of long cycles in k-connected unweighted graphs in the case k=2. Our proof of the above result also suggests a new proof to the theorem of Fournier and Fraisse in the case k=2

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom