A σ_3 type condition for heavy cycles in weighted graphs
Author(s) -
Hajo Broersma,
Xue Liang Li,
Shenggui Zhang
Publication year - 2001
Publication title -
discussiones mathematicae graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.476
H-Index - 19
eISSN - 2083-5892
pISSN - 1234-3099
DOI - 10.7151/dmgt.1140
Subject(s) - mathematics , combinatorics , vertex (graph theory) , graph , degree (music) , discrete mathematics , physics , acoustics
A weighted graph is a graph in which each edge e is assigned a non-negative number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its edges. The weighted degree dw(v) of a vertex v is the sum of the weights of the edges incident with v. In this paper, we prove the following result: Suppose G is a 2-connected weighted graph which satisfies the following conditions: 1. The weighted degree sum of any three independent vertices is at least m; 2. w(xz)=w(yz) for every vertex z∈N(x)∩ N(y) with d(x,y)=2; 3. In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a Hamilton cycle or a cycle of weight at least 2m/3. This generalizes a theorem of Fournier and Fraisse on the existence of long cycles in k-connected unweighted graphs in the case k=2. Our proof of the above result also suggests a new proof to the theorem of Fournier and Fraisse in the case k=2
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom