z-logo
open-access-imgOpen Access
Anti-tumor Efficiency of Lipid-coated Cisplatin Nanoparticles Co-loaded with MicroRNA-375
Author(s) -
Yang Tan,
Pengxuan Zhao,
Rong Zhao,
Bin Li,
Huiying Xue,
Jia You,
Chuanchuan He,
Weijie Li,
Xingxing He,
Robert J. Lee,
Xiang Ma,
Guangya Xiang
Publication year - 2015
Publication title -
theranostics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.689
H-Index - 97
ISSN - 1838-7640
DOI - 10.7150/thno.13130
Subject(s) - cisplatin , microrna , nanoparticle , chemistry , solid lipid nanoparticle , cancer research , nanotechnology , materials science , medicine , biochemistry , chemotherapy , gene
One of the major challenges in the hepatocellular carcinoma (HCC) treatment is its insensitivity to chemotherapeutic drugs. Here, we report the development of novel lipid-coated cisplatin nanoparticles co-loaded with microRNA-375 (NPC/miR-375) as a potential treatment for chemotherapy insensitive HCC. The NPC/miR-375 was fabricated by mixing two reverse microemulsions containing KCl solution and a highly soluble cis-diaminedihydroplatinum (II) coated with a cationic lipid layer. Subsequently, the miR-375 was incorporated into the lipid-coated cisplatin nanoparticles. The NPC/miR375 nanoparticles were expected to further decrease cell proliferation and to enhance the anti-tumor effect of cisplatin in chemotherapy resistant HCC cells. In vitro analysis of intracellular trafficking revealed that NPC/miR-375 were able to escape from the late endosomes instead of lysosomes thus avoiding degradation of the miR-375 in lysosomes. Importantly, NPC/miR-375 enhanced apoptosis and induced cell cycle arrest in HCC cells in vitro. In the double oncogenes Akt/Ras-induced primary HCC mouse model, multiple doses of NPC/miR-375 significantly inhibited tumor growth and delayed the tumor relapse. Our results indicate that cisplatin nanoparticles co-loaded with miR-375 represent a potential therapeutic agent for chemotherapy-insensitive HCC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom