z-logo
open-access-imgOpen Access
Development of a Novel 30 kV Solid-state Switch for Damped Oscillating Voltage Testing System
Author(s) -
Zhé Hóu,
Hongjie Li,
Jing Li,
Shengchang Ji,
Chenxi Huang
Publication year - 2016
Publication title -
journal of power electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.23
H-Index - 33
eISSN - 2093-4718
pISSN - 1598-2092
DOI - 10.6113/jpe.2016.16.2.786
Subject(s) - insulated gate bipolar transistor , galvanic isolation , voltage , electrical engineering , engineering , series and parallel circuits , solid state relay , electronic engineering , high voltage , power (physics) , topology (electrical circuits) , transformer , relay , physics , quantum mechanics
This paper describes the design and development of a novel semiconductor-based solid-state switch for damped oscillating voltage test system. The proposed switch is configured as two identical series-connected switch stacks, each of which comprising 10 series-connected IGBT function units. Each unit consists of one IGBT, a gate driver, and an auxiliary voltage sharing circuit. A single switch stack can block 20 kV-rated high voltage, and two stacks in series are proven applicable to 30 kV-rated high voltage. The turn-on speed of the switch is approximately 250 ns. A flyback topology-based power supply system with a front-end power factor correction is built for the drive circuit by loosely inductively coupling each unit with a ferrite core to the primary side of a power generator to obtain the advantages of galvanic isolation and compact size. After the simulation, measurement, and estimation of the parasitic effect on the gate driver, a prototype is assembled and tested under different operating regimes. Experimental results are presented to demonstrate the performance of the developed prototype.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom