z-logo
open-access-imgOpen Access
Proprotein Convertase Subtilisin/Kexin Type 9: From the Discovery to the Development of New Therapies for Cardiovascular Diseases
Author(s) -
Nicola Ferri
Publication year - 2012
Publication title -
scientifica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.474
H-Index - 21
ISSN - 2090-908X
DOI - 10.6064/2012/927352
Subject(s) - pcsk9 , kexin , proprotein convertase , ldl receptor , subtilisin , cholesterol , hmg coa reductase , medicine , pharmacology , lipoprotein , reductase , chemistry , biochemistry , enzyme
The identification of the HMG-CoA reductase inhibitors, statins, has represented a dramatic innovation of the pharmacological modulation of hypercholesterolemia and associated cardiovascular diseases. However, not all patients receiving statins achieve guideline-recommended low density lipoprotein (LDL) cholesterol goals, particularly those at high risk. There remains, therefore, an unmet medical need to develop additional well-tolerated and effective agents to lower LDL cholesterol levels. The discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), a secretory protein that posttranscriptionally regulates levels of low density lipoprotein receptor (LDLR) by inducing its degradation, has opened a new era of pharmacological modulation of cholesterol homeostasis. This paper summarizes the current knowledge of the basic molecular mechanism underlying the regulatory effect of LDLR expression by PCSK9 obtained from in vitro cell-cultured studies and the analysis of the crystal structure of PCSK9. It also describes the epidemiological and experimental evidences of the regulatory effect of PCSK9 on LDL cholesterol levels and cardiovascular diseases and summarizes the different pharmacological approaches under development for inhibiting PCSK9 expression, processing, and the interaction with LDLR.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom