z-logo
open-access-imgOpen Access
Pathology-Dependent Effects Linked to Small Heat Shock Proteins Expression: An Update
Author(s) -
AndréPatrick Arrigo
Publication year - 2012
Publication title -
scientifica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.474
H-Index - 21
ISSN - 2090-908X
DOI - 10.6064/2012/185641
Subject(s) - heat shock protein , biology , microbiology and biotechnology , chaperone (clinical) , pathological , co chaperone , protein folding , chemical chaperone , phenotype , hsp70 , cellular stress response , cell , protein aggregation , unfolded protein response , genetics , gene , fight or flight response , pathology , medicine , endoplasmic reticulum
Small heat shock proteins (small Hsps) are stress-induced molecular chaperones that act as holdases towards polypeptides that have lost their folding in stress conditions or consequently of mutations in their coding sequence. A cellular protection against the deleterious effects mediated by damaged proteins is thus provided to cells. These chaperones are also highly expressed in response to protein conformational and inflammatory diseases and cancer pathologies. Through specific and reversible modifications in their phospho-oligomeric organization, small Hsps can chaperone appropriate client proteins in order to provide cells with resistance to different types of injuries or pathological conditions. By helping cells to better cope with their pathological status, their expression can be either beneficial, such as in diseases characterized by pathological cell degeneration, or deleterious when they are required for tumor cell survival. Moreover, small Hsps are actively released by cells and can act as immunogenic molecules that have dual effects depending on the pathology. The cellular consequences linked to their expression levels and relationships with other Hsps as well as therapeutic strategies are discussed in view of their dynamic structural organization required to interact with specific client polypeptides.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom