z-logo
open-access-imgOpen Access
Bioactive rich extracts from Terminalia ferdinandiana by enzyme-assisted extraction: A simple food safe extraction method
Author(s) -
Mridusmita Chaliha,
Williams David,
Edwards David,
Pun Sharon,
Heather E. Smyth,
Yasmina Sultanbawa
Publication year - 2017
Publication title -
journal of medicinal plants research
Language(s) - English
Resource type - Journals
ISSN - 1996-0875
DOI - 10.5897/jmpr2016.6285
Subject(s) - extraction (chemistry) , gallic acid , chemistry , ellagic acid , ascorbic acid , chromatography , solvent , yield (engineering) , flavor , food science , polyphenol , antioxidant , biochemistry , materials science , metallurgy
A food grade compatible enzyme assisted extraction (EAE) technique for extracting bioactive compounds from freeze-dried Kakadu plum puree was evaluated. To optimise the extraction, a central composite rotatable design (CCRD) was conducted and effects of solvent concentration, enzyme concentration and time of reaction on extracted levels of free ellagic acid (fEA), ascorbic acid (AA) and total phenolic content (TPC) were determined. In the extracts, concentration of fEA ranged from 53.6 to 266.6 mg/100 g dry weight (DW) of Kakadu plum puree; AA 63.7 to 112.1 mg/100 g DW and TPC levels of 73.23 to 104.74 mg of gallic acid equivalent (GAE)/g. Extraction yield of fEA ranged from 10.3 to 51.3%. The model was found to be suitable for extraction of fEA - an important bioactive compound with documented antimicrobial properties from Kakadu plum fruit. A solvent (propylene glycol) concentration of 1.5% (w/w), enzyme (pectolytic enzymes) concentration of 300 mg/L and extraction time of 15 h was ascertained as optimum for the fEA extraction delivering a yield of 51.3%. The extraction method described here facilitates the provision of a simple, cost effective food-grade compatible extract that by-passes the need for organic solvents thereby obtaining an EA-rich aqueous extract with enhanced biological activities. This simple extraction method can also be applied to other EA rich plant material like pomegranate and peel of many common fruits which are generated as food processing by-products and can be easily adopted by numerous industries

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom