Chemical reactivity between CaCO3 and Ca(OH)2 in acid mine drainage (AMD) with mixing and shaking techniques during the destabilization-hydrolysis of the AMD
Author(s) -
I. O. Ntwampe,
F.B. Waanders,
John R. Bunt
Publication year - 2015
Publication title -
journal of chemical engineering and materials science
Language(s) - English
Resource type - Journals
ISSN - 2141-6605
DOI - 10.5897/jcems2015.0217
Subject(s) - shaker , hydrolysis , acid mine drainage , turbidity , chemistry , settling , alkalinity , polymer , reagent , mixing (physics) , chromatography , nuclear chemistry , mineralogy , environmental chemistry , environmental engineering , organic chemistry , geology , environmental science , physics , quantum mechanics , oceanography , vibration
The acid mine drainage (AMD) was poured into five 500 ml glass beakers. The samples were dosed with synthetic af-PFCl of Ca(OH)2 and af-PFCl of CaCO3 polymers respectively. The samples were treated in a jar test and a shaker at 250 rpm for 2 min, and thereafter were allowed to settle for an hour after which the pH, conductivity and turbidity (TSS) were measured. A similar second set of experiments was conducted by placing the samples in a shaker at 250 rpm for 2 min, after which three measurements were conducted after 1, 2 and 6 h. Similar third and fourth set of experiments was conducted dosing the AMD with 0.043 M of Ca2+ in Ca(OH)2, and 0.043 M Ca2+ in CaCO3 respectively. A fifth set of experiment was conducted by dosing the AMD sample with 0.021 and 0.043 M Ca2+ in Ca(OH)2 respectively and treated in a jar test, shaker and without mixing. The synthetic acid free PFCl of Ca(OH)2 or CaCO3 exhibited a high TSS removal efficiency. Both polymers also show a similarly identical TSS removal efficiency, which depict Fe3+ ions as the principal role player during destabilization-hydrolysis. Effective sedimentation of the turbid materials in the AMD sample with af-PFCl polymers of both Ca(OH)2 or CaCO3 occurs after 2 h of settling. The TSS removal values in the AMD sample which were treated in a shaker at 200 rpm are slightly lower than those treated in a jar test at 200 rpm. The residual TSS values in the AMD samples stirred at 350 rpm during rapid mixing are slightly higher compared to those stirred at 200 rpm rapid mixing. Key words: Drainage, shaking, settling, pH, turbidity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom