z-logo
open-access-imgOpen Access
Efficiency of empirical methods for reference evapotranspiration estimation in the district of Vilankulo, Mozambique
Author(s) -
Félix Tangune Bartolomeu,
António Chimene Catine
Publication year - 2019
Publication title -
international journal of water resources and environmental engineering
Language(s) - English
Resource type - Journals
ISSN - 2141-6613
DOI - 10.5897/ijwree2018.0780
Subject(s) - evapotranspiration , mean squared error , relative humidity , wind speed , sunshine duration , mathematics , penman–monteith equation , coefficient of determination , air temperature , statistics , environmental science , meteorology , geography , ecology , biology
Precise quantification of reference evapotranspiration (ETo) is crucial for calculating crop water demand. Eight empirical methods based on temperature and six on solar radiation were evaluated against Penman-Monteith FAO 56 method based on: Mean Bias Error (MBE), Root Mean Square Error (RMSE), Willmott coefficient (“d”), determination coefficient (R2) and the Student’s t-test. The meteorological data of Vilankulo district (maximum, minimum and medium temperature, relative humidity, wind speed and sunshine hours) were used and collected in the National Institute of Meteorology of Mozambique from 1979 to 2006. The results showed that Mak solar radiation method had the best efficiency (MBE = -0.03 mm day-1; RMSE = 0.28 mm day-1; "d" = 0.97 and R2 = 0.98). When sunshine hours or global solar radiation are not measured in order to use Mak method, Schendel method can be an alternative which requires air temperature and relative humidity (MBE = -0.09 mm day-1; RMSE = 0.81 mm day-1; “d” = 0.84 and R2 = 0.74). Both methods were not statistically different with PMF 56 method. The merit of this study stems from the fact that no similar study was conducted in Vilankulo district. Key words: Reference evapotranspiration, empirical methods, Penman Monteith.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom