z-logo
open-access-imgOpen Access
Optimization of medium composition for cis-epoxysuccinate hydrolase production in Escherichia coli by response surface methodology
Author(s) -
Feng Pan,
Bao Na,
Xie Zhi peng,
Guo Zhang
Publication year - 2010
Publication title -
african journal of biotechnology
Language(s) - English
Resource type - Journals
ISSN - 1684-5315
DOI - 10.5897/ajb10.952
Subject(s) - corn steep liquor , escherichia coli , response surface methodology , central composite design , hydrolase , lactose , chemistry , biomass (ecology) , food science , enzyme , composition (language) , recombinant dna , plackett–burman design , chromatography , biochemistry , biology , fermentation , agronomy , linguistics , philosophy , gene
Response surface methodology was applied to identify and optimize the medium composition for the cis-epoxysuccinate hydrolase production in recombinant Escherichia coli. Plackett-Burman design was used in the first step to evaluate the effects of 8 variables on the enzyme activity. CaCl2, corn steep liquor and lactose were screened as significant factors and their concentrations were further optimized using response surface methodology based on 23 full factorial rotatable central composite design. The optimum predicted medium for maximum expression of recombinant  cis-epoxysuccinate hydrolase was found to comprise: 17.1 g/l Na2HPO4·12H2O, 2.0 g/l KH2PO4, 0.5 g/l NaCl, 1.0 g/l NH4Cl, 0.0111 g/l CaCl2 and 0.5 g/l MgSO4·7H2O, 17.18 ml/l corn steep liquor and 9.74 g/l lactose, with a predicted enzyme activity of 35490 U/g biomass, which was very close to the experimental activity of 36318 U/g biomass resulting in 1.7-fold increment after optimization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom