z-logo
open-access-imgOpen Access
Sodium chloride causes variation in organic acids and proteins in tomato root
Author(s) -
Chen Jen Hshuan,
Lin Yong Hong
Publication year - 2010
Publication title -
african journal of biotechnology
Language(s) - English
Resource type - Journals
ISSN - 1684-5315
DOI - 10.5897/ajb09.1994
Subject(s) - fumaric acid , malic acid , chemistry , organic acid , oxalic acid , metabolism , biochemistry , citric acid , salt (chemistry) , sodium , botany , food science , biology , organic chemistry
Tomato is a salt-tolerant crop. The purposes of this research are to evaluate changes of organic acids and proteins in tomato grown in environment of different NaCl concentrations (0, 0.25 and 0.5%, respectively). The results showed that oxalic acid, malic acid, fumaric acid and proteins in which P69C, Cytochrome P450 proteins, Lucinerich protein, phototropin-1 and retrotransposon gag protein were upregulated in 0.5% NaCl treatment. However, there were some proteins were apparently inhibited in 0.5% NaCl treatment. Tomato roots under high NaCl concentration could be characterized by the cellular activities involved in carbohydrate metabolism, organic acid production, energy metabolism, alleviating redox damage, root phenotypical change etc, which are critical for plant survival under high NaCl concentration. This study may provide an important direction to future research on salt resistance mechanisms in tomato.   Key words: Tomato, salt tolerance, physiology, organic acids, proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom