Sensor-based algorithms to improve barley nitrogen efficiency in Queensland
Author(s) -
Paul Théophile Epée Missé,
Gupta Madan
Publication year - 2018
Publication title -
african journal of agricultural research
Language(s) - English
Resource type - Journals
ISSN - 1991-637X
DOI - 10.5897/ajar2017.12597
Subject(s) - normalized difference vegetation index , forage , canopy , agronomy , nitrogen , environmental science , fertilizer , algorithm , growing season , mathematics , vegetation (pathology) , leaf area index , chemistry , biology , botany , organic chemistry , medicine , pathology
The low efficiency of nitrogen (N) fertilizers impels the innovation of current N management strategies in cereal production. Site specific N management is an emerging field providing novel alternatives to current nutrient management practices through canopy sensing. Barley N use efficiency can be enhanced with GreenSeeker proximal sensors, whose optimal utilization requires algorithms. The design of such algorithms required four N rates (0, 50, 100 and 150 kg N ha-1) and in-season sensing of barley canopy reflectance using a handheld GreenSeeker sensor as well as crop N analysis. The N rates produced enough variability in yields, N uptake and normalized difference vegetation index (NDVI) readings together with strong determination coefficients between in-season NDVI values on one hand and on the other hand in-season N uptake (R2=0.68, p<0.001), forage yield (R2=0.84, p<0.001), forage N uptake at harvest (R2 = 0.65, p<0.001), grain yields (R2=0.88, p<0.001), and grain N uptake (R2 = 0.84, p<0.001). These factors enabled the development of in-season N fertilizer algorithms for barley grain and forage production. The built algorithms will enable farmers using GreenSeeker sensors to better manage barley N fertilization with positive outcomes for their financial returns and environmental contamination. Key words: Barley canopy reflectance, nitrogen fertilizer algorithm, GreenSeeker, N use efficiency, normalized difference vegetation index (NDVI), nitrogen uptake.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom