Near infrared spectroscopy (NIRS) technology applied in millet feature extraction and variety identification
Author(s) -
Cuiqing Wu,
Lijuan Kong,
Sheng Wang,
Yuming Guo
Publication year - 2017
Publication title -
african journal of agricultural research
Language(s) - English
Resource type - Journals
ISSN - 1991-637X
DOI - 10.5897/ajar2017.12420
Subject(s) - principal component analysis , linear discriminant analysis , artificial neural network , mathematics , mean squared error , correlation coefficient , near infrared spectroscopy , coefficient of determination , calibration , second derivative , artificial intelligence , pattern recognition (psychology) , statistics , computer science , biology , mathematical analysis , neuroscience
Near infrared spectroscopy (NIRS) technology is widely used on agricultural products for quality detection, classification and variety identification due to its rapid speed and high-efficiency. NIRS experiments were conducted to identify varieties of DUN millet, JIN 21 millet and 5 other types of millet. The NIRS characteristic curves and data of millet samples were collected. The spectroscopic data on different types of millet were analyzed by discriminant analysis, principal component analysis and neural network technology. The calibration set correct classification was 98.9%. A BP neural network prediction model for millet was also built. It was found that the forecast results of original wave spectrum prediction model were best, with its correlation coefficient of validation (Rv) at 0.9999, the standard error of prediction (SEP) was 0.0191 and the root mean square error of prediction (RMSEP) was 0.0189. Moreover, the Rv of first derivative spectra was 0.9976, the SEP and RMSEP were 0.1043 and 0.1437, respectively, and the Rv, SEP and RMSEP of second derivative spectra were 0.9835, 0.28735 and 0.2720 respectively. This study laid the foundation for identification of millet varieties by NIRS. Key words: Millet, near infrared spectroscopy (NIRS), principal component analysis, neural network prediction, variety identification.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom