Dynamic Malware Analysis and Detection in Virtual Environment
Author(s) -
Akshatha Sujyothi,
Shreenath Acharya
Publication year - 2017
Publication title -
international journal of modern education and computer science
Language(s) - English
Resource type - Journals
eISSN - 2075-017X
pISSN - 2075-0161
DOI - 10.5815/ijmecs.2017.03.06
Subject(s) - malware , computer science , malware analysis , static analysis , cryptovirology , cluster analysis , data mining , identification (biology) , virtual machine , computer security , machine learning , artificial intelligence , operating system , programming language , botany , biology
The amount and the complexity of malicious activity increasing and evolving day by day. Typical static code analysis is futile when challenged by diverse variants. The prolog of new malware samples every day is not uncommon and the malware designed by the attackers have the ability to change as they propagate. Thus, automated dynamic malware analysis becomes a widely preferred technique for the identification of unknown malware. In this paper, an automated malware detection system is presented based on dynamic malware analysis approach. The behavior of malware is observed in the controlled environment of the popular malware analysis system. It uses the clustering and classification of embedded malware behavior reports to identify the presence of malicious behavior. Based on the experimentation and evaluation it is evident that the proposed system is able to achieve better F-measures, FPR, FNR, TPR and TNR values resulting in accurate classification leading to more efficient detection of unknown malware compared to the traditional hierarchical classification approach.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom