z-logo
open-access-imgOpen Access
Classification of Electroencephalographic Changes in Meditation and Rest: using Correlation Dimension and Wavelet Coefficients
Author(s) -
Atefeh Goshvarpour,
Ateke Goshvarpour
Publication year - 2012
Publication title -
international journal of information technology and computer science
Language(s) - English
Resource type - Journals
eISSN - 2074-9015
pISSN - 2074-9007
DOI - 10.5815/ijitcs.2012.03.04
Subject(s) - meditation , computer science , wavelet , dimension (graph theory) , rest (music) , correlation , correlation dimension , pattern recognition (psychology) , electroencephalography , artificial intelligence , mathematics , psychology , philosophy , mathematical analysis , neuroscience , pure mathematics , acoustics , theology , physics , fractal dimension , geometry , fractal
Meditation is a practice of concentrated focus upon the breath in order to still the mind. In this paper we have investigated an algorithm to classify rest and meditation, by processing of electroencephalogram (EEG) signals through the Wavelet and nonlinear methods. For this purpose, two types of EEG time series (before, and during meditation) of 25 healthy women are collected in the meditation clinic in Mashhad. Correlation dimension and Wavelet coefficients at the forth decomposition level of EEG signals in Fz, Cz and Pz are extracted and used as an input of different classifiers. In order to evaluate performance of the classifiers, the classification accuracies and mean square error (MSE) of the classifiers were examined. The results show that the Fisher discriminant and Parzen classifier trained on both composite features obtain higher accuracy than that of the others. The total classification accuracy of the Fisher discriminant and Parzen classifier applying Wavelet coefficients was 85.02% and 84.75%, respectively which is raised to 92.37% in both classifiers using Correlation dimensions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom