z-logo
open-access-imgOpen Access
Real Time Recognition of Handwritten Devnagari Signatures without Segmentation Using Artificial Neural Network
Author(s) -
Shailendra Kumar Dewangan
Publication year - 2013
Publication title -
international journal of image graphics and signal processing
Language(s) - English
Resource type - Journals
eISSN - 2074-9082
pISSN - 2074-9074
DOI - 10.5815/ijigsp.2013.04.04
Subject(s) - computer science , signature (topology) , pattern recognition (psychology) , artificial intelligence , signature recognition , feature extraction , artificial neural network , biometrics , handwriting recognition , authentication (law) , feature (linguistics) , segmentation , process (computing) , mathematics , linguistics , philosophy , geometry , computer security , operating system
Handwritten signatures are the most commonly used method for authentication of a person as compared to other biometric authentication methods. For this purpose Neural Networks (NN) can be applied in the process of verification of handwritten signatures that are electronically captured. This paper presents a real time or online method for recognition and verification handwritten signatures by using NN architecture. Various features of signature such as height, length, slant, Hu's moments etc are extracted and used for training of the NN. The objective of online signature verification is to decide, whether a signature originates from a given signer. This recognition and verification process is based on the instant signature image obtained from the genuine signer and a few images of the original signatures which are already part reference database. The process of Devnagari signature verification can be divided it into sub-processes as pre-processing, feature extraction, feature matching, feature comparison and classification. This stepwise analysis allows us to gain a better control over the precision of different components.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom