Sharp polynomial energy decay for locally undamped waves
Author(s) -
Matthieu Léautaud,
Nicolás Lerner
Publication year - 2015
Publication title -
séminaire laurent schwartz — edp et applications
Language(s) - English
Resource type - Journals
ISSN - 2266-0607
DOI - 10.5802/slsedp.79
Subject(s) - homogeneity (statistics) , mathematics , polynomial , torus , mathematical analysis , tree traversal , codimension , function (biology) , physics , geometry , statistics , algorithm , evolutionary biology , biology
In this note, we present the results of the article [LL14], and provide a complete proof in a simple case. We study the decay rate for the energy of solutions of a damped wave equation in a situation where the Geometric Control Condition is violated. We assume that the set of undamped trajectories is a flat torus of positive codimension and that the metric is locally flat around this set. We further assume that the damping function enjoys locally a prescribed homogeneity near the undamped set in traversal directions. We prove a sharp decay estimate at a polynomial rate that depends on the homogeneity of the damping function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom