Speed-up of reaction-diffusion fronts by a line of fast diffusion
Author(s) -
Henri Berestycki,
Anne-Charline Coulon,
JeanMichel Roquejoffre,
Luca Rossi
Publication year - 2014
Publication title -
séminaire laurent schwartz — edp et applications
Language(s) - English
Resource type - Journals
ISSN - 2266-0607
DOI - 10.5802/slsedp.62
Subject(s) - diffusion , laplace operator , line (geometry) , plane (geometry) , planar , physics , exponential function , anomalous diffusion , mathematical analysis , mathematics , geometry , quantum mechanics , computer science , computer graphics (images) , knowledge management , innovation diffusion
In these notes, we discuss a new model, proposed by H. Berestycki, J.-M. Roquejoffre and L. Rossi, to describe biological invasions in the plane when a strong diffusion takes place on a line. This model seems relevant to account for the effects of roads on the spreading of invasive species. In what follows, the diffusion on the line will either be modelled by the Laplacian operator, or the fractional Laplacian of order less than 1. Of interest to us is the asymptotic speed of spreading in the direction of the line, but also in the plane. For low diffusion, the line has no effect, whereas, past a threshold, the line enhances global diffusion in the plane and the propagation is directed by diffusion on the line. When the diffusion is the Laplacian, the global asymptotic speed of spreading on the line grows as the square root of the diffusion. In the other directions, the line of strong diffusion influences the spreading up to a critical angle, from which one recovers the classical spreading velocity. When the diffusion is the fractional Laplacian, the spreading on the line is exponential in time, and propagation in the plane is equivalent to that of a one-dimensional infinite planar front parallel to the line.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom